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Abstract

The calculation of the partition function for N M5-branes is addressed for the case in which
the world-volume wraps a manifold T 2 ×M4, where M4 is simply connected and Kaehler. This is
done in a compactification of M-theory which induces the Vafa–Witten theory on M4 in the limit
of vanishing torus volume. The results follow from the equivalence of the BPS spectrum counting
in the complementary limit of vanishing M4 volumes and from a classification of the moduli space
of quantum vacua of the supersymmetric twisted theory in terms of associated spectral covers. This
reduces the problem of the moduli counting to algebraic equations. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The discovery of D-branes [1] led string theory to new and unexpected roads. While
the low energy effective theory of the strings ending on BPS branes by now seems to be
well understood in the flat world-volume case, the problem of formulating and solving it for
non-flat branes is still left to be completely settled out. A first major step in this direction has
been done in [2], where the naturalness of the twist mechanism for the gauge theory living on
the brane was noticed. The root of this stems to the fact that the transverse bosonic degrees
of freedom are in fact sections of the normal bundle of the embedded hypersurface on which
the branes lay down. On the other hand, the BPS stability condition is guaranteed only if on
the brane world-volume some supersymmetry is left [14]. In [2] the supersymmetric cycle
condition has been indicated as the root of the twisting procedure.

All this finds a natural explanation once linked to the geometrization of the effective
field theory point of view introduced in [3], where the realization of the world-volume
embedding equations has been understood as the realization of the SW curve associated to
the relevant gauge theory. SW curves [4,5] have been introduced as basic tools to understand
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the geometry of the space of gauge inequivalent vacua in supersymmetric gauge theories.
Their RG properties and phases have been therefore better understood in a proper geometric
framework. An important development [6] has been given by the understanding that these
curves can be seen as spectral curves of an integrable system and that the SW differential
generates the RGEs as an explicitly integrable system. On the other hand, these curves
constitute the materialization of flat D-branes world-volumes in the M-theory flat target
space. As far as we are concerned, the most important property of this construction is that
the curves intrinsic stability has been understood in terms of the stability of the corresponding
vacuum in the gauge theory. This means that the moduli space of these curves represent
stable gauge inequivalent vacua of the theory — at least in the YM-coupling regime which
we believe to be covered by this picture. Let us remark that all this just follows from the
fact that the associated integrable system is obtained by the equations associated to susy
preserving BPS field configurations.

Due to the uncontestably partial view offered by perturbative formulation of string theo-
ries, during the last years the interest has been extended to the study of its non-perturbative
sectors. The concept of strong–weak duality led to a new picture of the string theory moduli
space which goes under the name of M-theory [7,8]. The spectrum of the D = 11 corner
of M-theory contains membranes and M5-branes states whose dynamics has not been fully
understood by now. Under compactifications M-theory generates, in particular, all D-brane
states. One might be interested in understanding if the integrable system framework can
then be promoted in some way also to the study of M-branes states.

A really odd object in M-theory is represented by the M5-brane since, due to the
self-duality of the relevant 2-tensor which lives on it, its relative gauge theory is of a
non-Lagrangian type and then much harder to be understood. On top of it, another and harder
problem seems to be raised by the lack of a proper formulation in the case of (non-Abelian)
higher rank gauge theories which should apply to the multi-M5-brane theory.

As far as the single M5-brane theory is concerned, the determination of its partition
function is available, at least in some specific cases, but its multibrane analogous still resists
several attaches.

A simplified configuration, which is more suitable to be studied, is the case in which
the M5-brane world-volume is of the factorized form T 2 × M4, where T 2 is a 2-torus
and M4 a four-manifold. In this case [9], the analysis of the CFT living on the M5-brane
can be attached by reducing to the limit of vanishing 2-torus volume and landing on a
four-dimensional gauge theory.

In the case which we will study, the resulting gauge theory is the twisted version of SYM
with N = 4 and U(N) gauge group which has been considered in [10]. Let us notice here
that once the spectrum of the theory is given, its two derivative low energy effective theory
comes out to be automatically topological. This suggests that in such compactifications (see
later on for a more precise picture) there is a substantial decoupling of the world-volume
theory from the bulk parameters so that in makes sense to consider the N M5-branes bound
state in isolation. This is possible if in particular the corresponding M5-brane anomalies
vanish.

On the other hand, the same theory can be studied in an equivalent limit of vanishing
M4 volume thus showing the naturalness of the results in [10], where the structure of the
partition function was exhibited as corresponding to a two-dimensional toric model [11].
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In this paper, we will try to add a new piece to this brane–gauge theory correspondence
by proposing a solution for the twisted N = 4U(N) theory with M4 a simply connected
Kaehler four manifold. Our analysis generalizes the one given in [12] where M4 was a K3
surface, to the case in which M4 is a simply connected Kaehler manifold with h(2,0) > 0.
This will be done by exploiting the structure of the gauge inequivalent vacua space of the
theory as a space of holomorphic covering of the base four manifold.

This article is organized as follows. In the next section, we will recall how the twisting gets
generated in generic CY case and exploit the natural link between twisted Higgs–Hermitian
configurations describing D-brane bound states and spectral covers. In Section 3, the elliptic
genus associated to a single M5-branes is discussed in full detail in order to ideologically
justify the subsequent developments. In Section 4, the case of N M5-branes is solved by
the explicit solution of the relevant moduli space identification problem. Conclusions and
open questions are contained in Section 5.

2. Refreshing the twist and the spectral covers

Let MD be a D-dimensional manifold (D = 10 for type II theories and D = 11 for
M-theory) and let Wp be a (p + 1)-dimensional hypersurface smoothly embedded in MD

with p + 1 ≤ D.
If Wp is flat, the low energy effective theory of NDp-branes in type II theories whose

world-volume coincides with Wp is the (p+ 1)-dimensional reduction of theN = 1 SYM
in 10 dimensions. This represents, at weak coupling, the theory of open strings ending on
the branes. In particular, the transverse D − p − 1 bosonic fields, which are in the adjoint
of the gauge bundle and vectors with respect to the transverse unbroken rotational group,
are interpreted as representing the transverse motions of the brane itself.

Let us now turn to the more complicate case in which Wp is not a flat manifold. In
particular, it means that there is no possible choice for the embedding functions to produce
a flat induced metric. It is possible that the normal bundle is nonetheless flat, due to some
particular structure of the embedding. In this case, one is led to study SYM theory on the
curved Wp and then the analysis carried out in [13] applies. We will concentrate here in
cases in which the normal bundle is not flat.

The generic situation arises as follows. Let us consider a given MD target space pre-
serving some fraction of susy. This implies the existence of covariantly constant spinors
on it and hence a holonomy reduced structure in the target space. On the other side, the
susy left on the brane sitting on Wp will be determined by the relative orientation of the
reduced spin bundle under the reduced holonomy. The supersymmetric cycle condition
[14] then relates the normal and the tangent bundles in a non-trivial way. This implies
that the spinor bundle S = ST(Wp) ⊗ SN(Wp), to which the spinors belong, admits a
representation as a sum of integer spin representations of the tangent bundle itself. This
induces then the twisting of the supersymmetric SYM theory which would be present
in the flat case. In particular, the superalgebra itself get twisted to the appropriate co-
homological algebra. Several examples of the above mechanism can be found both in
[2,15], where a general discussion about the induction of the twist by the normal bundle is
presented.
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Let us concentrate on (partial) wrapping along even susy Kaehler cycles. Notice that,
while for a single brane the BPS stable states are specified by particular holomorphic
embeddings in the target space, in the N branes case the BPS stable states are determined
by an integrable system. In several cases the normal bundle splits as N(Wp) = N (Wp) ⊕
N̄ (Wp) and the integrable system is built from a holomorphic vector bundle E and a
holomorphic section ΦN of Adj(E) ⊗N (Wp) as

DΦN = 0, F (2,0) = 0, ω · F + [ΦN , (ΦN )†] = 0,

where ω is the Kaehler form on the cycle.
In particular, then the spectral cover for the system

det(ΦN − φ1N) = 0

materializes in the total space of the holomorphic factor of the normal bundle and classify
its solutions. Let us here stress the obvious fact that the normal bundle total space is nothing
but (a part of) the target space itself. Hence this curve is identified with the relevant wrapped
world-volume of the N branes system and is the analogous of the SW curve in the curved
case.

The case of the M5-brane is technically more complicated and much less understood,
but we accept it to follow a similar pattern. The first problem is that the world-volume
theory is not an SYM theory, but a gauge theory of a self-dual tensor multiplet. Secondly,
the higher rank case is not either formulated. In this case, one can try to understand it as
the strong coupling limit of the D4-brane theory, but the very structure of the M-interaction
[16] remains unknown by now. A possibility to investigate the M5-brane theory structure
is anyhow to wrap it on a product cycle in such a way to produce a twisted supersymmetric
YM theory, which is then topological, on a factor. Assuming it not depending on the ratio
of the volumes of the factor cycles, it is then possible to try to gain some informations just
by rescaling inversely the volumes and see if the theory happens to have a simpler picture.
Notice that so doing we are pretending the world-volume theory of the M5-brane to be
effectively decoupled with respect to the bulk fields. On the other hand, it is well known
that the theory of the M5-brane suffers from inborn and inflow anomalies and that therefore,
to have a consistent substantially decoupled brane configuration one has to verify that both
these contributions to the anomaly cancel separately. Of course, the coherence of the full
out-come result is a test for the M-theory conjecture.

3. The single M5-brane partition function

The geometric set-up that we refer to is the following [30]. We consider M-theory on
W = Y6 × T 2 ×R3, where Y6 is a Calabi–Yau threefold of general holonomy. Let M4 be a
supersymmetric simply connected four-cycle in Y6 which we take to be a representative of
a very ample divisor [30]. Notice that M4 is automatically equipped with a Kaehler form ω

induced from Y6. We consider then one 5-brane wrapped around C = T 2 × M4.
The bosonic spectrum of the world-volume theory of this 5-brane is given by a 2-form V

with self-dual curvature and five real bosons taking values in the normal bundleNC induced
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by the structure of the embedding as TW |C = TC ⊕ NC . Passing to the holomorphic part
and to the determinants and using the properties of Y6, it follows that the five transverse
bosons are, respectively, three non-compact real scalars φi and one complex section of
KM4 = Λ−2T

(1,0)
M4

, the canonical line bundle of M4, Φ. The (partially) twisted chiral (0, 2)
supersymmetry completes the spectrum.

Notice that to have a self-consistent theory of a 5-brane in isolation, it has to be anomaly
free by itself and also from the inflow point of view. These conditions are fulfilled if [21]

(p1(TC) − p1(NC))
2 = 4p2(TC), p2(NC) = 0.

In our case, we have

p(TC)= c(T
(1,0)
M4

)c(T
(0,1)
M4

) = 1 + (2c2 − c2
1) + c2

2,

p(NC)= c(KM4)c(K̄M4) = 1 − c2
1,

where ci = ci(T
(1,0)
M4

), and the above conditions are identically satisfied. Let us notice here
that this requirement is enough also for the cancellation of the anomalies in the case of
several 5-branes, at least as it is given in [22].

Even if a precise recipe to give a Lagrangian formulation of the theory is not known,
fortunately we have the possibility to calculate the partition function of the 5-brane in the
limits in which the volume of one of the two factors of C = T 2 × M4 vanishes. If the two
results will agree we can believe that really the theory depends on the product of the two
volumes only and then promote this feature to the N > 1 case too.

Let us reduce to zero the volume of M4. In this case [11,20], V gives a vector a, b+ left
and b− right real compact scalars, Φ gives b(0,2) complex scalars and φi three real scalars.
All in all we have b2 + 2 left and 4b(0,2) + 4 right scalar bosons. The chiral fermions will
provide correspondingly 4b(0,2) + 4 right periodic fermions and no left fermions.

The elliptic genus is defined as

E = (Im τ)d/2

Vd
TrRR[(−1)FFσ/2

R qL0 q̄L̄0 ],

where d is the number of non-compact scalar bosons, Vd their zero-mode volume and (0, σ )
are the supersymmetries of the model. By general arguments, E is a (− 1

2d,− 1
2d)+ (0, 1

2σ)

modular form.
In our case, we have σ = 2b+ + 2 = 4b(2,0) + 4 right fermions and d = 3 + 2b(2,0) =

2 + b+ non-compact scalar bosons by the dimensional reduction giving the elliptic genus
to be a modular form of total weight (−1 − 1

2b+, 1
2b+).

We can calculate the elliptic genus using standard techniques in CFT2 as 1

ZM
1 =

(
θΛ(q, q̄)

ηb−(q)ηb+(q̄)

)
·
(

1

η(q)η(q̄)

)3+2b(2,0)
· (η(q̄))4b(2,0)+4 = θΛ(q, q̄)

ηχ (q)
,

where the first factor comes from the compact bosons, the second from the non-compact

1 We assumed b1 = 0 because of the ampleness of M4 as a divisor in Y6. If this would not be the case, we then
had a further multiplicative factor (η/η̄)2b1 .
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bosons and the last one comes from the fermions. The function

θΛ(q, q̄) =
∑
m∈Λ

q1/4(m,∗m−m)q̄1/4(m,∗m+m)

is a generalized θ -function, Λ is the lattice of integer period in H 2(M,R), (·, ·) is the
intersection form, ∗m is the Hodge dual of m and q = e2π iτ . The unmatched left scalar
bosons produce the overall factor of η(q)−χ , where η(q) = ∑

n(−1)nq3/2(n−(1/6))2 is the
Dedekind η-function and χ = 2 + b2 is the Euler characteristic of M . In particular, ZM

1 is
a modular form of weight ( 1

2b−, 1
2b+) + (− 1

2χ, 0) = (−1 − 1
2b+, 1

2b+) as it had to be.
Let us now reduce to zero the volume of the torus. The six-dimensional V field reduces

then to a vector A and to a real scalar b, while Φ just generates a section of the canonical
bundle B and the three scalars φi remain three scalars. The twisted U(1) theory spectrum
is given by the gauge field A, a self-dual 2-form B+ = B+ωb+ B̄ and three scalars, as far
as the bosonic part is concerned, and by its twisted-susy counterpart given by Grassmann
valued two self-dual 2-forms, two 1-forms and two scalars.

Up to the gauge field A, which is a connection for the gauge bundle all the other fields
are also sections of the adjoint bundle, and therefore in the single brane case, uncharged.

As it is naturally expected, in the calculation of the U(1) partition function, once also
the ghosts are properly taken into account, there is a complete cancellation between all the
fluctuation contributions and we are left with an exact expression of the partition function
coming only from the zero-mode contributions. 2 Therefore, the contribution from the
gauge sector is the classical one coming from the U(1) gauge field which can be evaluated
to be [17]

q−χ/24θΛ,

where θΛ(q, q̄) = ∑
m∈Λq1/4(m,∗m−m)q̄1/4(m,∗m+m) is exactly the same object that we have

found before [11].
To obtain the full partition function one has to add up also the contribution coming from

point-like degenerate instantons which amounts to a multiplicative factor of

∑
n

qn dimH ∗
(
Mn

4

Sn

)
= 1∏

n>0(1 − qn)2+b2
= qχ/24η−χ .

The nature of this factor can be traced back to [31].
Therefore, all in all, we obtain

ZM
1 = θΛ

ηχ
,

which is the same result that we had in the two-dimensional computation.

2 In detail, denoting by ∆i the determinants of the Laplacian on i-forms, the bosonic sector contributes with
(∆0/

√
∆1) · (1/(∆+

2 )
1/2) · (1/(∆0)

3/2), while the fermionic sector contributes as [(∆+
2 )

2 · (∆1)
2(∆0)

2]1/4 giving
all in all 1. Also, an exact cancellation between the zero modes volumes takes place and no Im τ factors are present
because of the topological symmetry of the twisted theory.
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4. The N M5-branes partition function

The N 5-brane theory is not known. What we assume to be true — and will show to be
consistent — is the following.

By shrinking the M4 volume to zero we find a toroidal σ -model valued in the moduli
spaceM of BPS-like field configurations of the twistedN = 4 SYM U(N) theory on M4
itself, in the spirit of Bershadsky et al. [18]. By shrinking the torus volume to zero we find
directly the twisted N = 4 SYM U(N) theory on M4.

The torus contribution will amount to the elliptic genus of the (stratified) moduli space
M, while the same object is to be obtained as the M4 partition function (with fermionic
insertions). This, as explained in [10], counts the Euler characteristic ofM and fits exactly
this identification [9].

Notice that in the limit of zero volume of the torus, M-theory on T 2 ×Y6 ×R3 is dual to
perturbative type IIB on R×Y6 ×R3 with coupling τ and that the N M5-brane system gets
mapped to a bound state of N D3-branes wrapped around M4. Their low energy description
is in fact given by the twisted N = 4 SYM with gauge group U(N) as given above.

4.1. The moduli space and the spectral cover

In this section, we calculate the relevant moduli space of the twistedN = 4 Yang–Mills
theory.

The twisted U(N) theory spectrum is given by the gauge field A, a self-dual 2-form B+
and three scalars, as far as the bosonic part is concerned, and by its twisted-susy counterpart
given by Grassmann valued two 2-forms, two 1-forms and two scalars. Beside the gauge
field A, which is a connection for the gauge bundle E, all other fields are also sections of
the adjoint bundle Adj(E).

Let us start from the susy fixed point condition for the twistedN = 4 theory with gauge
group U(N). These are given by the following equations [10]:

ω ∧ F + [B, B̄] = 0, F (2,0) = 0, D̄B = 0, (4.1)

where ω is the Kaehler form on M , F the curvature of the relevant gauge bundle E, B is a
section of End(E) ⊗ K with K the canonical line bundle of M while B̄ is its conjugate.

We associate to each solution of (4.1) a spectral four manifold defined by the equation

det(k1N − B) = 0, (4.2)

where k is an indeterminate taking values in the total space of the canonical line bundle K ,
where Eq. (4.2) defines a rank N holomorphic covering of M . Let us call Σ this resulting
Kaehler manifold.

To construct the solution explicitly, start writing the spectral surface equation as

0 = det(k1N − B) = kN +
N−1∑
i=0

kiβi, (4.3)

where βi are holomorphic sections of KN−i which can be explicitly be given by symmetric
polynomials in B.
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Let us first consider the case in which Σ is connected. This means that the polynomial
in (4.3) is irreducible. By using the complexification of the gauge group, we can reduce B
to its bare bones, i.e. write it as

B =




−βN−1 −βN−2 · · · · · · −β0

1 0 · · · · · · 0

0 1 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0



, (4.4)

while the reduced complex bundle remains

E = EN = N⊕
i=1

LN+1−2i , (4.5)

where L is a line bundle over M such that L2 = K . This data reduction from principal
Higgs bundles spectral surface data is called Abelianization in the mathematical literature
(see, for example [23]). Notice that only if N is even K has really to admit a square root
L. Moreover, the overall phase is fixed by the SL(N,C) complexified structure group. As
we will explain later on, it is not at all a coincidence that EN in (4.5) is modeled on the
N -dimensional irreducible SU(2) representation.

In general, the B characteristic polynomial splits in irreducible monic factors 3 of degree
a > 0 as

det(k1N − B) =
∏
a

[Pa(k)]
na , (4.6)

where N = ∑
aa · na . The relative covering spectral surface factors then in connected

components as Σ = ⋃
a[Σa]na , where Σa is the surface given by the equation Pa = 0 and

is given by a specific choice of L.
Let us notice that the multiplicities na indicates the presence of a non-trivial unbroken

subgroup J = Sn1 × (Sn2 �� Z2)× (Sn3 �� Z3), . . . of the U(N) Weil group SN which has
to be factorized out in order to get the true moduli space. This determines the moduli space
of solutions of (4.1) to be the Hilbert scheme of holomorphic coverings of M4 in Y6.

The factorization (4.6) induces the analogous structure on the vector bundle as E =
⊕aE

⊗na
a which is in fact modeled on the generic reducible N -dimensional representation

RN of SU(2). In terms of irreducible ones we have in fact RN = ∑
a[R(irr)

a ]na , where R(irr)
a

is the unique a-dimensional SU(2)-representation. The sum over these SU(2) embeddings,
which will not be reviewed here, is the sum over the sectors explained at length in [10]
(Section 5) and in [12]. Let us point out here that this analysis [24] of the vacua structure
fails exactly at the canonical class, which for a generic Kaehler manifold is non-empty,
giving rise to locally enhanced gauge symmetry. This corresponds exactly in the spectral
cover picture to the branching locus. Notice also the natural action of the J subgroup of

3 For example, let us consider the case N = 2 and the polynomial k2 + b0, where b0 is a holomorphic section of
K2. We have factorization if we can write b0 = s2 with s a holomorphic section of K .
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the Weil group on RN which symmetries with respect to the multiplicities of the SU(2)
irreps. Anyhow, this field theory analysis is valid only if bM4+ > 1 when the moduli space
of holomorphic deformations of M4 in Y6 is of positive dimension.

Generically, the canonical divisorK = ∑
lCl can be considered to be a sum of irreducible

curves Cl . The branching locus of the covering is the zero locus of the discriminant of the
B characteristic polynomial (4.2) which is a holomorphic section of KN(N−1). Therefore
the branching locus can be represented as a collection of the irreducible components of the
canonical divisor itself as H = ⋃

l
′
C′
l for a subset {l′} ∈ {l}. Unfortunately, we cannot still

conclude about the structure of the spectral cover canonical class, KΣ because of a residual
set in the lifting of the branching locus. On the other hand, because of ampleness, we have
in any case that KΣ is still very ample by construction and therefore its Betti numbers are
computable directly by making use of the formulas obtained in [30] as

b+(Σ) = −1 +
∫
Y

1

3
Σ3 + 1

6
Σc2(Y ), b−(Σ) = −1 +

∫
Y

2

3
Σ3 + 5

6
Σc2(Y ),

and the fact that Σ = MN/H . Specifying Y , M and H one can in principle explicitly
calculate also the intersection form on Σ .

4.2. K3 as the totally reducible case and the T 2 multiplicity

Let us now go back to the 5-brane point of view: the 5-brane is taken to be N times
wrapped around W = T 2 × M4.

In [2] it has been shown that if M4 is a K3, then the partition function of N coinciding
branes on it is obtained by summing over all the possible rank N holomorphic coverings of
the T 2 over itself.

If M is a K3 surface, then, since K3 does not admit any non-trivial holomorphic line
bundle for a generic complex structure, there is no non-trivial solution of (4.1). Therefore,
in calculating the N 5-branes partition function, the sum over all the possible holomorphic
coverings of C over itself reduces to the T 2 sector since the only irreducible holomorphic
covering of K3 results to be the trivial one. The counting is then made following [26]
by summing over all the possible holomorphic coverings of T 2 over itself, which is by
summing over all the resulting values of the covering tori moduli, the result being given by
the Hecke transform of order N of the single 5-brane partition function on W :

ZK3
N = HNZ

K3
1 . (4.7)

Let us comment about the important fact that the M5-brane point of view tells us the exact
way we have to count the multiplicity of the trivial covering, i.e. it is the M5-brane point of
view which fixes the form of the Hecke transform induced by the symmetric space elliptic
genus formula.

Our aim is now to generalize the above result to a more general case. The counting of
BPS bound states of N M5-branes is then the counting of holomorphic self-covering of C
on itself with total rank N . They can be classified in terms of partitions of N in positive
integers as N = ∑

aa ·na such that each term in the sum represents a connected component
of the covering and each component is a connected na-folded holomorphic covering of the
torus times a connected a-folded holomorphic covering of M4.
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Let us now associate to each connected component a partition function Za,na . Then, for
each given partition N = ∑

aa · na , the total contribution to the partition function will be
given by the product∏

a

Za,na .

From the K3 case analysis we learn that the T 2 multiplicity na is naturally kept into
account by the Hecke operator as Za,na = HnaZa,1, where Hn is the Hecke transform
of order n. The Hecke operator structure can be recognized from the field theory side as
being the result of the process of redefinition of the coupling of the gauge theory due to
the rescaling of the traces weights [2] and we have shown it to correspond just to the J

symmetrization operation. On the other side, its appearance from the torus point of view
is naturally obtained as the result of the relevant instanton sum in the σ -model [19]. Let
us anticipate here that the contribution Za,1 will turn out to be a modular form of weight
(−1− 1

2b
Σa+ , 1

2b
Σa+ ). Since the Hecke transform preserves modularity, our final result admits

a natural interpretation from the two-dimensional point of view as the elliptic genus of a
specific sigma model valued in the co-homology of the moduli space of vacua that we just
calculated. The calculation is much similar to the one that we already gave for the rank
one case.

We are then left with the calculation of the four-dimensional field theory contribution in
the irreducible case without torus multiplicity.

4.3. The field theory counting

By the topological nature of the twisted N = 4 SYM, our partition functions localize
around the solutions of (4.1). Therefore, if one is going to calculate the partition function
of N coinciding 5-branes wrapped around C as the partition function of a single 5-brane
wrapped N times around C by counting all the possible rank N holomorphic coverings of
C on itself, then the relative spectral surface should be kept into account in the covering
counting, if solutions with non-trivial B of (4.1) exist.

Let us now proceed by making use of the analysis of the vacua structure of the theory
that we just performed. As we have shown above all the leftover calculation is reduced to
the irreducible coverings.

The field theory path integral for the twisted susy theory can be performed by semi-classical
approximation which, due to the topological features of the twisted theory, turns out to be
exact. This can be done just following the analysis in [27], which is given for the untwisted
case, adapting it to the twistedU(N) theory as follows. Each generic point in the (irreducible
part of the) moduli spaceMirr breaks completely the gauge invariance from U(N) to the
maximal compact Cartan torus U(1)N , up to the local enhancing at the canonical class,
by singling out a canonical choice for a Cartan subalgebra. Integrating out the non-Cartan
valued fields, the semi-classical evaluation of the path integral reduces to a collection of
N -Abelian twisted multiplets, one for each sheet of the spectral cover. The lifting technique,
which is just the field theory counterpart of the Abelianization for sections of principal Higgs
bundles, then gives as an outcome the twisted super-Maxwell theory on the spectral cover
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Σ , which is the single 5-brane contribution ZΣ
1 that we just had in the previous section, but

evaluated on the spectral cover. 4

The total contribution to the irreducible sector will be then given after a summation over
all the possible L line bundles is also kept into account. Assuming K1/2 to exist on M4, we
haveL = K1/2 ⊗Oε. Here,Oε = ∑

lεl[Cl], where [Cl] are the reductions modulo 2 of (the
Poincare dual of) the curvesCl that we introduced before, the label ε indicates the collections
of integer numbers {εl} which satisfy ε2

l = εl for each l. Recalling that the reduced form of

the vector bundle isEN = ∑N
i=1L

N+1−2i , we obtainEN = O⊗N+1
ε ⊗∑N

i=1(K
1/2)N+1−2i .

With this parameterization of the line bundle L, we can write our final result as

Za,na = HnaZa,1, Za,1 =
∑
ε

θΛΣa+x

ηχΣa
,

wherex = [O⊗a+1
ε ] shifts correspondingly the lattice of integer periodsΛΣa onH 2(Σa, R).

Notice that this shift is effective only if a is even.
Needless to say,Za,1 is non-vanishing effectively only if there exists irreducible solutions

of the spectral equation of the corresponding orders.
A closer inspection should reveal the correspondence between the sum over the x-classes,

once the proper U(1) components are divided out from our formula, and the sum over the
SW classes as obtained in [25] for the SU(2) case. Moreover, similar results to the K3 case
should hold more generally for manifolds M and given values of N such that M does not
admit irreducible self-holomorphic coverings of ranks corresponding to partitions of the
actual N , beside the one corresponding to a = 1 and n1 = N .

Since the partition function ZΣ
1 is completely determined by the intersection form on

H 2(Σ), we could calculate it in full explicit form case by case by specifying the particular
cycle in a given Calabi–Yau.

5. Conclusions and open problems

In this note, we used the geometrical properties of the M5-brane in M-theory to address
the problem of calculate the partition function in the twisted N = 4, D = 4 SYM on a
Kaehler manifold, pushing on a strong geometric interpretation of the first.

Our calculational scheme is quite general and could be tested in different specific config-
urations. In particular, we think it would be important to understand weather it extends to
the bM+ = 1 cases where the absolute rigidity of the 4-cycle causes well-known problems in
the evaluation of the partition function, the quantum field theory vacua analysis remaining
empty.

It would be very interesting to understand from this general point of view also the problem
of holomorphic anomalies. This question is strictly linked to the degeneration corners of the
moduli spaces in the reducible locus and can be understood from the spectral cover point
of view almost easily in terms of subloci in which the factorization in different connected
components of the generically connected spectral surface takes place. This automatically

4 The lifting technique has been originally performed in the two-dimensional case corresponding to Matrix String
Theory in [28,29].
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generates extra zero-modes representing other M5-branes bound states at threshold causing
the holomorphic anomaly. The technical and less trivial part is then the full identification
of that contribution in the partition function.

The most severe bound in performing the above programs is that admittedly our formula
is rather implicit because of the lack of the necessary mathematical technology to calculate
in the generic case the canonical class of the spectral surface and its intersection form.

Another interesting possible development could be to try to extend this analysis to
M-theory on R3 × Y8, with Y8 an elliptically fibered CY fourfold and the M5-branes
wrapped around an elliptically fibered supersymmetric 6-cycle in it in order to try to extract
more informations about the structure of the N M5-brane world-volume theory.

With the same attitude, a possible very interesting development would be to generalize
and clarify the genus expansion given for the SU(2) case in [25] to the U(N) case obtained
here. Doing this, one could be able to exhibit the form of the N M5-brane partition function
as a (tensionless) string theory one.

As a possible application one could use the results obtained here to M-theory black
hole entropy counting generalizing the analysis in [30,32]. The result of our investigation
suggests the existence of several contributions relative to the different possible holomorphic
covering of C = T 2 ×M4 in the form of a fine structure in the entropy formula. This seems
to lead to subleading M-theory corrections to the full 11-dimensional supergravity result as
discussed in [33–35]. Anyhow, all the sectors counting, done as

(9S)a,na = 2π

√
nac

Σa

L

6
,

where cΣa

L = ∫
Y6
(Σ3

a +Σa · c2(Y6)), will yield in the large cycle volume and large N limit,
the appropriate result.
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